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ABSTRACT 23 

Traffic signs are one of the most important assets for transportation systems; they provide 24 

vital guidance to road users and ensure roadway safety. Transportation agencies need to 25 

perform routine inspection and timely maintenance to keep traffic signs at good service 26 

condition. Traditionally, transportation agencies conduct traffic sign condition assessment 27 

manually. These methods can be extremely time-consuming and costly. More importantly, 28 

using the manual records, it is very challenging for transportation agencies to monitor the 29 

temporal condition changes of traffic signs, and there lacks detailed information to 30 

understand the insights of frequency, trend, and possible causes of these condition 31 

changes. There is a need for a reliable and efficient method to identify and quantify the 32 

temporal condition changes of traffic signs, so that an optimized maintenance plan can be 33 

effectively carried out. This paper proposes a framework for automatic awareness of 34 

traffic sign condition changes using multi-temporal sensing data. This framework can not 35 

only identify the damaged traffic signs for immediate treatment, but can also provide 36 

insights for understanding the progression of subtle condition changes before traffic signs 37 

are severely damaged. A prototype algorithm for identifying and quantifying bent traffic 38 

sign using mobile LiDAR is developed to substantiate the framework and demonstrate its 39 

feasibility. Experimental test was conducted on Interstate 85 within the state of Georgia 40 

to evaluate the performance of the developed algorithm and the proposed framework. The 41 

proposed framework shows promising results in identifying bent traffic signs and 42 

quantifying the subtle changes of the bending angles using multi-temporal sensing data. 43 

By incorporating additional traffic sign condition identification algorithms, the proposed 44 

framework can provide a reliable and efficient means for transportation agencies to 45 

implement their traffic sign maintenance system through automatic condition change 46 

awareness.   47 



INTRODUCTION 48 

Traffic signs are one of the most important assets for transportation systems; they provide 49 

vital guidance to road users regarding traffic regulation, warnings, destination 50 

information, and temporary road condition information. However, the condition of traffic 51 

signs constantly deteriorate due to many reasons, e.g. aging, environmental, vandalism, 52 

etc., which can dramatically degrade their visibility and eligibility (1). It is critical for 53 

transportation agencies to conduct routine inspection and timely maintenance to keep 54 

traffic signs in good service conditions. There are two inherent needs from transportation 55 

agencies in traffic sign condition inspection; they are 1) to identify the locations of 56 

damaged signs, so that a timely treatment can be performed, and 2) to monitor the 57 

temporal condition changes of the traffic signs, so that optimized traffic sign maintenance 58 

strategies can be performed by understanding the progression of condition changes of 59 

traffic signs before they are severely damaged. Traditionally, transportation agencies 60 

conduct manual traffic sign condition inspection, using either windshield or detailed field 61 

survey. These manual methods can be extremely time-consuming and costly. More 62 

importantly, using the manual records, it is very challenging for transportation agencies 63 

to monitor the temporal condition changes of traffic signs before they are severely 64 

damaged, and there lacks detailed information to understand frequency, trend, and 65 

possible causes of the condition changes. 66 

With advances in sensing technologies, several automatic methods have been 67 

developed to identify damaged traffic sign or traffic signs with poor conditions. VISUAL 68 

Inspection of Sign and panEL (VISUALISE) system is developed by Gonzales, et al. (6) 69 

to automatically assess retroreflectivity condition using calibrated correlation between 70 

image intensity and retroreflectivity. A Multi-scale Sign Image Matching (M-SIM) 71 

method was developed by Tsai et al. (3) to automatically identify the missing, tilt and 72 

blocked traffic signs using camera calibration and scale-invariant feature transform 73 

(SIFT). Although some of these automatic methods report appealing results and can 74 

potentially improve the current practice for identifying damaged traffic signs, none of 75 

these methods are designed to support transportation agencies’ need for temporal 76 

monitoring of traffic sign condition changes. Hence, this paper proposes a comprehensive 77 

framework for automatic traffic sign condition change awareness using multi-temporal 78 

sensing data. This framework is targeted at not only automatically identifying traffic 79 

signs that are damaged and require immediate treatment, but also targeted at quantifying 80 

the subtle temporal changes of traffic signs before they are severely damaged. This 81 

framework can help transportation agencies to better understand the progression of the 82 

traffic sign condition changes, and eventually to facilitate optimized traffic sign 83 

maintenance strategies. The proposed framework includes four key components, 84 

including: 1) traffic sign data acquisition, 2) traffic sign condition identification, 3) multi-85 

temporal sensing data merging, and 4) traffic sign condition change quantification.  86 



The proposed framework can adapt existing and forthcoming algorithms for identifying 87 

traffic sign conditions. A prototype bent traffic sign identification and quantification 88 

algorithm using mobile light ranging and detection (LiDAR) is developed to substantiate 89 

the proposed framework and demonstrate its feasibility. The actual multi-year data is 90 

collected on Interstate 85 within the state of Georgia to evaluate the performance of the 91 

developed algorithm and the proposed framework.  92 

This paper is organized as follows. The first section identifies the research need 93 

and objective. The second section presents typical traffic sign damages or poor conditions 94 

that are concerned by transportation agencies. The third section presents the proposed 95 

framework. The fourth section presents a prototype algorithm for identifying and 96 

quantifying bent traffic signs using mobile LiDAR. The fifth section presents the 97 

experimental test conducted on I-85 to demonstrate the feasibility of the proposed 98 

framework. Finally, the conclusions and recommendations for future research are 99 

presented.  100 

TYPICAL TRAFFIC SIGN DAMAGES AND POOR CONDITOINS 101 

Damaged traffic signs or traffic sign with poor condition can no long supply adequate 102 

visibility and/or eligibility (2, 4). Transportation agencies define damaged traffic signs 103 

and poor conditions differently based on maintenance requirement, causes, severity, etc. 104 

The following for types are commonly used by transportation agencies as shown in 105 

FIGURE 1.  106 

 107 
FIGURE 1 Typical traffic sign damages and poor conditions 108 

 Bent signs: bent traffic signs refer to the traffic signs whose surfaces are distorted due 109 

to environmental issues, inappropriate mounting, material aging, etc. Some of the 110 

severely bent traffic signs require immediate replacement as the intended information 111 

of the traffic signs can be invisible or ineligible due to the bent;  112 

 Vandalized signs: vandalized signs refer to the traffic signs that are damages by 113 

vandalization, e.g. paint ball, sticker, graffiti, etc. Vandalized signs should be repaired 114 

or replaces due to the destruction of the intended information; 115 

 Obstructed signs: obstructed signs refer to the traffic signs that are completely or 116 

partially blocked by obstructions, e.g. vegetation, facility pole, etc. The obstruction 117 

should be removed in timely measure to maintain the visibility of the traffic signs;  118 



 Signs with poor retroreflectivity: poor retroreflectivity condition refer to the night 119 

time visibility of the traffic signs. The minimum requirement of the retroreflectivity is 120 

required by the latest manual of uniform traffic control devices (MUTCD) (2, 5). 121 

Traffic signs with poor retroreflectivity require timely replacement to provide 122 

adequate nighttime visibility.  123 

Transportation agencies routinely inspect the abovementioned traffic sign 124 

conditions and perform timely treatment on traffic signs that are severely damaged. 125 

Constraint by agencies’ stringent funding availability, some of traffic sign conditions may 126 

not trigger immediate treatment, but still require continuous monitoring. However, the 127 

current manual inspection results cannot provide quantitative measurement for tracking 128 

the temporal condition changes. This paper proposes a framework that can not only 129 

identify traffic signs that are severely damages for immediate treatment, but can also 130 

provide temporal monitoring of the condition changes, so that optimized traffic sign 131 

maintenance strategies can be performed by understanding the progression of these 132 

changes of traffic signs before they are severely damaged. 133 

PROPOSED FRAMEWORK 134 

The objective of the proposed framework is to serve the two inherent needs from 135 

transportation agencies in traffic sign condition inspection: 1) to identify the locations of 136 

damaged signs and 2) to monitor the temporal condition changes of the traffic signs. The 137 

proposed framework consists of four key components, including traffic sign data 138 

acquisition, sensing-based traffic sign condition identification, multi-temporal sensing 139 

data merging, and traffic sign condition change quantification. FIGURE 2 shows the 140 

overall flowchart of the proposed framework.    141 

 142 
FIGURE 2 Flowchart of the proposed framework for automatic traffic sign 143 

condition change awareness 144 



Component 1: Traffic Sign Data Acquisition: At each time of data acquisition, e.g. 145 

annually, both the new sensing data, e.g. video log images, LiDAR point cloud, global 146 

navigation satellite system (GNSS) data, etc., and the existing inventory data are 147 

collected and integrated using geo-references, so that each inventoried traffic sign record 148 

will be associated with its corresponding video log image and LiDAR point cloud. 149 

FIGURE 3 shows an example of the inventoried sign record that is associated with the 150 

new sensing data. The video log images and the traffic sign-associated LiDAR point 151 

clouds retrieved from the sensing data. A unique location descriptor is assigned to each 152 

inventoried sign record, e.g. GPS coordinates, etc.  153 

 154 
FIGURE 3 Example of the integration of inventory record and sensing data 155 

Component 2: Traffic Sign Condition Identification:  For each inventoried sign record, 156 

the corresponding sensing data, i.e. video log image, LiDAR point cloud, etc., is 157 

processed using different condition identification algorithms. A detailed traffic sign 158 

condition descriptor is created to store the fundamental condition information for each 159 

traffic sign record, e.g. retroreflectivity, surface facing, etc. FIGURE 4 shows two 160 

examples of the sign condition descriptor for different sign conditions for a bent interstate 161 

sign with 100 degree bending angle, and a vandalized merge sign with 5% coverage. 162 

Both existing and forthcoming algorithms can be integrated in this component to fulfill 163 

the attributes of the sign condition descriptor. Transportation agencies can define their 164 

criteria for determining damaged signs for immediate treatment. For example, if all the 165 

traffic signs with and bending angle greater than 15 need be to be repaired, the interstate 166 

sign with a bending angle of 100 will require immediate flattening repair. In the 167 

subsequent section, a prototype algorithm for bent sign identification and measurement is 168 

presented to substantiate this concept.  169 



 170 
FIGURE 4 Examples of the condition descriptor for different traffic sign conditions 171 

Component 3: Multi-Temporal Sensing Data Merging: For the sensing data acquired at 172 

different time, the spatial correlation is established by registering the corresponding 173 

positioning data. According to the availability of the positioning data, different 174 

registration method can be employed, e.g. LiDAR registration (10, 11), image-LiDAR 175 

registration (12), or image-based registration (13, 14). Since each traffic sign record 176 

incorporates the derived traffic sign condition information from the previous step, the 177 

corresponding records acquired at different times can be spatially registered and 178 

compared. FIGURE 5 shows an example of the registration result using LiDAR point 179 

clouds from two different times. It can be observed that after the data merging, the 180 

corresponding traffic sign records from the consecutive years can be associated.  181 

 182 
FIGURE 5 Example of multi-temporal sensing data merging using LiDAR point 183 

cloud (Time 1- blue, Time 2 – red; Overlapped traffic sign – white) 184 

Component 4: Traffic Sign Condition Change Quantification:  Once the corresponding 185 

traffic sign records are associated, the condition changes can be quantified by comparing 186 

the corresponding attributes of the sign condition descriptors. For example, the 187 

deterioration of the retroreflectivity condition can be monitored to predict the expected 188 

service life for each individual traffic sign, so that a sheeting replacement prioritization 189 

can be performed. In the subsequent section, a prototype algorithm is developed to 190 



quantify the degree of sign bent to demonstrate the concept of sign condition change 191 

quantification. The quantified condition changes can be automatically updated to the 192 

condition change logs and the updated inventory data will be recorded, so as to support 193 

transportation agencies’ maintenance activity recommendation and prioritization. 194 

PROTOTYPE ALGORITHM FOR BENT SIGN EVALUATION 195 

A prototype algorithm for automatically identifying bent traffic signs and measure the 196 

bending angles using LiDAR point cloud data is developed in this paper to substantiate 197 

the key components of the proposed framework. FIGURE 6 shows the flowchart of the 198 

developed algorithm, each step of which is corresponded to the proposed framework in 199 

FIGURE 2. As the Components 1 and 3 have described in previous section, this section 200 

focuses the Components 2 and 4, the octree-based coplanar clustering and the bending 201 

change comparison respectively.  202 

 203 
FIGURE 6 Flowchart of the proposed algorithm for bent traffic sign evaluation 204 

Octree-Based Coplanar Clustering 205 

A coplanar clustering algorithm using octree-based split and merge method (8) is 206 

introduced to determine whether the traffic sign is bent, and to compute the bending 207 

angles if bent. The split process of the algorithm is to recursively split the LiDAR point 208 

cloud that is associated with a traffic sign, until each node of the octree only contains 209 

points that satisfy the coplanar criterion. The merge process of the algorithm is the 210 

applied to combine the neighboring nodes if the points in the combined node still satisfy 211 

the coplanar criterion. The merging process will be exhaustively conducted until no 212 

neighboring nodes can be merged without violating the coplanar criterion. If there is only 213 

one node remains (i.e. one cluster), then the traffic sign is not bent. Otherwise, a bent 214 

traffic sign is identified, and the number of nodes (i.e. clusters) indicates the number of 215 

facets of the bent traffic sign. The angle between the two largest nodes will be computed 216 

as the bending angle of the traffic sign.  217 

The coplanar criterion is determined using the principle component analysis (PCA) 218 

(9). The following equations are constructed for PCA computation for the optimal normal 219 

of the given data, i.e. points within a node. The solution is obtained from the three 220 



eigenvectors. The eigenvectors represent the three axes of the points, while the 221 

eigenvalues denote the square sum of points deviating along the corresponding axis.  222 

Therefore, the minimum eigenvalue represents the variation along the normal direction of 223 

the best estimated plane using the points within each node. 224 
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where k is the number of points in the point cloud   ,  ̅ is the centroid of the cluster,    is 225 

the j-th eigenvalue of the covariance matrix C and  ⃗  is the j-th eigenvector. Coplanar 226 

points should result in very small variation along the normal direction of the estimated 227 

plan. Therefore, the coplanar criterion is defined as     (  )   ). The selection of the 228 

threshold ∆ is determined by the systematic range measurement error of the LiDAR 229 

sensor.  230 

FIGURE 7 shows an illustration of the split process using a 2-D example. 231 

FIGURE 7(a) shows the space contains all the traffic sign associated LiDAR points, as 232 

the root node. Since the coplanar criterion is not satisfied, the space is split into eight sub-233 

spaces (only four shown in FIGURE 7(b)). The points set in node 1 and 2 pass the 234 

coplanar criterion, so no further split is required. The points set in node 0 will be further 235 

split into eight sub-spaces, as shown in FIGURE 7(c). Since the points set in all the nodes 236 

pass the coplanar criterion, no further split is required.  237 

 238 
   (a)               (b)           (c) 239 

FIGURE 7 Split process of the proposed algorithm 240 

FIGURE 8 shows an illustration of the merge processing. As shown in FIGURE 241 

8(a), the points in neighboring nodes can share a similar normal direction, which 242 

indicates that these points should be merged into the same cluster. Therefore, for each 243 

node, the coplanar test is conducted by including the points from one of the neighboring 244 

nodes. If the coplanar criterion is satisfied, the two nodes are merged into one as shown 245 

in FIGURE 8(b). The merging process is exhaustively conducted for all the nodes until 246 

no further merging can be conducted. FIGURE 8(c) shows the results of the clustering. 247 

Two nodes (i.e. two clusters) are identified in this point cloud, which means a bent traffic 248 



sign is identified.  As shown in FIGURE 8(c), by computing the angle among different 249 

normal vectors from each facet, the bending angle is determined for the identified bent 250 

traffic sign, i.e. 〈     〉 .   251 

 252 
  (a)               (b)           (c) 253 

FIGURE 8 Merge process of the proposed algorithm 254 

Bending Change Comparison 255 

With the detailed information derived from the developed algorithm, transportation 256 

agencies can not only clearly identify the bent traffic signs, but can also compare the 257 

condition with previous data and quantify the changes of the bending (i.e. angle increases 258 

– more severe bending, facet increases – more severe bending and rolling, etc.). This 259 

prototype algorithm uses bent traffic signs as an example to demonstrate the feasibility of 260 

the proposed framework.   261 

EXPEREMENTAL TEST 262 

The objective of the experimental test is to evaluate the performance of the developed 263 

prototype algorithm and the overall feasibility of the proposed framework for traffic sign 264 

condition change awareness. The data on I-85 within the state of Georgia is collected in 265 

FY2013 to conduct the experimental test, which consists of more than 115 thousand 266 

frames of video log images and more than 91million LiDAR points.  267 

To evaluate the performance of the develop prototype algorithm, the ground truth 268 

was established by manually review of the sensing data collected in FY2013. Among all 269 

of the 2505 traffic signs inventoried, 10 bent traffic signs are identified. FIGURE 9(a) 270 

shows examples of the identified bent signs. The automatic traffic sign detection 271 

algorithm developed by Ai and Tsai (7) was applied first to extract the LiDAR point 272 

clouds that are associated with traffic signs. The developed algorithm was then applied to 273 

each of the LiDAR point clouds to identify the bending changes and measure the degree 274 

of bending. All of the 10 bent traffic signs were correctly identified, while the bending 275 

angles were computed. FIGURE 9(b) shows a result of the identified bent signs with the 276 

perspective view and the computed normal directions.  277 



 278 
(a) 279 

 280 

(b) 281 

FIGURE 9 Results of the proposed algorithm 282 

To demonstrate the feasibility of the proposed framework, an additional data 283 

collection in FY2014 was conducted to demonstrate the bending condition changes in the 284 

consecutive years. By registering the sensing data in FY2013 and FY2014 and comparing 285 

the bent sign identification results derived from the developed algorithm, the following 286 

changes were observed: 287 

 8 out of the 10 bent traffic signs in FY2013 was repaired/replaced by Georgia 288 

Department of Transportation; 289 



 3 new bent traffic signs were identified in FY2014 which requires incoming 290 

maintenance;  291 

 2 out of the 10 bent traffic signs in FY2013 remained unrepaired. A progression of 292 

the bending angle is identified using the proposed framework in one of the two bent 293 

signs. FIGURE 10  shows the comparison of the progression in bending angles. It can 294 

observed from the video log images in FIGURE 10 (a) that the top part of the speed 295 

limited sign in has a narrow bent, and the bent becomes more severe in the later year, 296 

i.e. FY 2014. FIGURE 10(b) shows the point cloud projected along the side of the 297 

speed limit sign to illustrate the progression of the bending angle. In FY2013 the 298 

bending angle α is 26, while the bending angle α increases to 46 in FY2014.  299 

 300 
FIGURE 10 Comparison results between FY2013 and FY2014 301 

The results using the sensing data collection in FY2013 and FY2014 clearly 302 

demonstrate that by integrating the developed algorithm, the proposed framework can 303 

conveniently identify the bending changes using mobile LiDAR data.  By integrating 304 

algorithms for identifying other sign condition changes, the proposed framework can 305 

more comprehensively support transportation agencies with an informed traffic sign 306 

maintenance strategy by synthesizing all the identified condition changes and prioritize 307 

the maintenance activities accordingly. 308 

CONCLUSIONS AND RECOMMENDATIONS 309 

This paper proposes a comprehensive framework for automatic traffic sign condition 310 

change awareness using multi-temporal sensing data. This framework is targeted at not 311 

only automatically identifying traffic signs that are severely damaged and require 312 

immediate treatment, but also targeted at quantifying the subtle temporal changes of 313 

traffic signs before they are severely damaged. This framework can help transportation 314 

agencies to better monitor the progression of the traffic sign condition changes, 315 

understand the frequency, trend and possible causes of the condition changes, and 316 

eventually to facilitate optimized traffic sign maintenance strategies. 317 



While the proposed framework is general enough to adapt different traffic sign condition 318 

or traffic sign damage identification algorithms, a prototype bent sign identification 319 

algorithm is developed in this paper to substantiate the proposed framework and 320 

demonstrate the feasibility of the proposed multi-temporal condition change awareness. 321 

An experimental test using the sensing data collection on I-85 was conducted to validate 322 

the developed algorithm and the proposed framework. Comparing with the manual 323 

ground truth, all of 10 bent traffic signs from FY2013 data are successfully identified by 324 

the developed algorithm.  By comparing the results of the identified bent traffic signs 325 

from FY2013 and FY2014, the changes of the bent signs are reliably monitored by 326 

comparing the conditions derived from the multi-temporal sensing data. The locations of 327 

repaired bent signs, newly bent signs and deteriorated bent signs are accurately retrieved. 328 

Such comprehensive information provides transportation agencies insights for 329 

understanding the frequency, deterioration trend, and possible causes of the changes, 330 

which can lead to optimized maintenance strategies.  331 

For future improvement and development of the framework, the following 332 

recommendations are provided: 1) The accuracy of the bending angle measurement 333 

should be further validated; 2) Larger datasets with diverse traffic sign conditions and 334 

from different sensor models and configurations should be further evaluated; and 3) 335 

Additional automatic traffic sign condition identification algorithms should be further 336 

incorporated in the proposed framework for further validation. 337 
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